Final 5G EVE Webinar

New 5G EVE platform features – Performance diagnosis

Christos Ntogkas, Yannis Chondroulis, Ioannis Belikaidis, Evangelos Kosmatos, Vassilis Foteinos, Kostas Tsagkaris, Panagiotis Demestichas (WINGS ICT Solutions)

- Motivation
 - Verticals require automated tools to ensure the reliability and high performance of the services running on top of the 5G network
 - Verticals require effective methods and tools for the appropriate allocation of virtual resources fine-tuned to the needs of their 5G services
 - Need for automated prediction and localization of faults and service degradations, which will then trigger the generation of automated decisions for improving the performance or mitigate the possible faults
 - Diagnostic tools can maximize the impact of 5G vertical application testing

- Solution
 - Design and develop a 5G Performance Diagnostic Tool as an in integral part of 5G EVE platform
 - Diagnostic Tool
 - targets the maximization of the impact of the testing and validation procedures
 - monitor the health status of all the nodes in the service graph and identify any performance degradations
 - offers insights regarding the observed performance by applying post-process analytics on the collected metrics and KPIs
 - execute root cause analysis (RCA) to identify the elements that generate the impairments
 - compare the performance of candidate service deployments (service profiling)

- Performance Diagnosis Tool capabilities
 - Estimates the health status of all involved nodes using
 Self Organizing Maps (SOMs)
 - Execute Root Cause Analysis (RCA) using RCA algorithms based on adjacency lists
 - Offers service profiling insights

Performance Diagnosis Tool – Node health status estimation using SOM

- A SOM (self-organizing map) is a type of artificial neural network that is trained using unsupervised learning and apply competitive learning
- Training:
 - unsupervised modelling
 - heterogeneous metrics used (system, network and application level)
 - weight values are calculated for each neuron
 - a respective model is produced for diagnosis
- Deployment:
 - nodes' metrics are fed to the trained SOM after the experiment has finished
 - the health status of each node is determined by comparing a) the neurons' weights and b) the node's collected data
 - the % deviation of the metrics from the model's weights is continuous monitored and shown
 - the most possible cause (metric) of the deviation is estimated

This Project has received funding from the EU H2020 research and innovation programme under Grant Agreement No 815074

Self Organizing Map

Performance Diagnosis Tool - Root cause analysis (RCA)

• Inputs:

- health status results from SOM algorithm
- service topology information is used as an n-node undirected graph represented as an adjacency list
- Deployment:
 - Step 1: determines the status of individual elements in the network, using the service topology, for each available network path
 - Step 2: checks non-reachable nodes that are blocked by others (non-healthy nodes), to identify the latter as root causes
- The final results depicts the detailed health status of the nodes (SOM) and the path status of the topology (RCA)

Service topology + Health status

Network paths + Health status

Performance Diagnosis Tool – Service Profiling

• Inputs:

- KPIs generated during the experiment
- Candidate service deployments (allocation of virtual resources)
- Deployment:
 - Step 1: collect the results of executions for each unique deployment
 - Step 2: calculate the resulting performance per deployment option correlated with the service deployment characteristics

Service profiling results for 3 deployment options

• Who can use the diagnostic tool?

- Any vertical/experimenter who plan to use the 5G EVE platform for service validation (UCs inside or outside of 5G EVE project)
- Any vertical/experimenter who plan to use the 5G EVE platform for identifying any possible performance degradations or impairments and apply RCA on them

How an experimenter can use the tool? — Demo (phase 1)

- During experiment design phase in 5G EVE portal, the experimenter should select the "Performance Diagnosis Support" option.
- During experiment design, metric and node names should follow defined naming conventions (presented in the demo and in 5G EVE user manual)
- All the necessary information are collected through 5G-EVE's Interworking Layer (Network Service Descriptors, metrics from the central Kafka broker)
- Where the results of diagnostic tool are presented?
 Demo (phase 2)
 - The diagnostics results are presented on the final validation report available on the 5G EVE portal

Demo: Phase 1: Vertical actions to use the diagnostic tool

Experiment Design Service deployment as VNFs +000 × **_** ۹ Hanage Site - 🔀 🚽 - X X • Experiment w/ Id: d1246aab-b7eb-4805-8261-798abab22ec7 -8 EXECUTE 10.30.30.0/24 Test exc. ENABLED.

Demo video 1

Demo: Phase 2: Application of diagnostics on Smart City Use Case

• Deployment emulates the Smart City Use Case

- The AIRWINGS Service is deployed in a VNF using the 5G-EVE infrastructure
- A VNF emulates the functionality of AIRWINGS sensors, sending packets of data to the AIRWINGS Server, through relay nodes (VNF)
- To demonstrate the usage of the diagnostics tool, fault injection is introduced randomly to one of the two intermediate VNFs

Demo video 2

Thank you!

